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1. Introduction

In the last few years, there has been a lot of effort to understand the dynamics of space-

times with non-trivial geometries in the framework of string theory. Several deep and

fundamental insights have been obtained in the course of the study, which have remark-

ably contributed to our understanding of the underlying mathematical structure of singular

spaces. The central tool in this study has been Witten’s Gauged Linear Sigma Model [1]

(called GLSM in the sequel) a two dimensional U(1)r (world sheet) field theory, with (2, 2)

supersymmetry. It has by now been realised that the classical limits of the GLSM provide

a very powerful tool in the analysis of stringy dynamics of non-trivial geometries, espe-

cially when these break space-time supersymmetry. A U(1)r GLSM describing a singular

space has r Fayet-Iliopoulos (FI) parameters, which, for space-time non-supersymmetric

theories, are one loop renormalized. Tracking the flow of the GLSM between its various

classical limits, in terms of the RG flow of the FI parameters gives us information about

the different phases of the theory. Indeed, a full understanding of these phases is essential

in order to completely specify string theory on non-trivial backgrounds.

Consider, e.g. a U(1) GLSM of four chiral fields, with charges

Q = (Q1, Q2, Q3,−Q4) (1.1)

When
∑

i Qi 6= 0, the GLSM describes a non-supersymmetric orbifold via the D-term

equation
∑

i

Qi|φi|
2 + r = 0 (1.2)

modulo the U(1) identification. Varying the Fayet-Iliopoulos parameter r then determines

the behaviour of the model at different points in the moduli space and gives us information

about the various possible decays of this unstable orbifold under localised closed string

tachyon condensation. In order to fully understand stringy dynamics in this model, one
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needs to specify the full set of possible Fayet-Iliopoulos parameters in the theory (thereby

enlarging the charge matrix) and in general this leads to a rich phase structure. In partic-

ular, it has been shown that one can recover the complete set of D-brane charges in these

theories by considering the Coulomb branch of the GLSM as well.

Apart from its utility in studying generic orbifold singularities, the GLSM has also

been the central tool in the recent advances in our understanding of the extension of

Maldacena’s AdS/CFT correspondence [2], involving N = 4 Super Yang Mills theory,

to less supersymmetric situations. According to its original formulation, the AdS/CFT

correspondence states that type IIB string theory on AdS5×S5, with appropriately chosen

R-R five form flux on the S5 is dual to large N N = 4 Super Yang-Mills theory. This

duality has been refined since its inception to include more realistic situations with less

supersymmetry, and we now know that type IIB string theory on AdS5×Y 5, where Y 5 is a

Sasaki-Einstein manifold (i.e a manifold whose metric cone is Calabi-Yau), with appropriate

five form flux turned on, is dual to a four dimensional N = 1 superconformal field theory

(see, e.g [3]). Few explicit examples of Sasaki Einstein manifolds were known till a few years

back, when a major breakthrough was achieved in [4], where an infinite class of explicit

Sasaki Einstein metrices with topology S2 × S3 were constructed.

Much work has followed since then, and the most general family of metrices that have

the topology of S2 × S3 is denoted by La,b,c, with a, b, c being three positive integers. In

the special case when a = p − q, b = p + q, c = p, the La,b,c metrics reduce to the family

of Y p,q metrics (see, e.g [4]). As is well known, the dual N = 1, d = 4 SCFT in these cases

naturally arises as the worldvolume low energy theory of a stack of D-3 branes probing

a Calabi-Yau singularity, and residing at the tip of the singular Calabi-Yau cone. These

are particularly simple yet illustrative examples, since the Calabi-Yau singularity is a toric

variety. The toric description of the Y p,q class of metrics was provided in [5], using which

the dual gauge theories were constructed in [6]. Further work [7] has illustrated the GLSM

approach to the more general La,b,c spaces, and the main ingredient in the story is that the

La,b,c toric singularities arise as vacua of GLSMs, with charge matrices of the form1

Q = (Q1, Q2,−Q3,−Q4) (1.3)

where the Qis are positive (coprime) integers. This is in distinction to the charge matrix in

eq. (1.1) where three of the charges have the same sign. In applications to the AdS/CFT

correspondence, the charges are chosen such that they sum to zero, in order to satisfy the

Calabi-Yau condition, but in general, this need not be true. When
∑

i Qi 6= 0, the GLSM

describes an orbifold of the conifold singularity [8], and results indicate that these might

have, in certain regions of moduli space, stable La,b,c singularities. In other words, as in case

of orbifold theories, the singularity in question is unstable and decays to a stable singularity

in the sense of the RG. Given the importance of generic La,b,c spaces, it is important to

understand the full phase structure of the GLSMs that may contain the latter in its phases.

For example, one can ask if these La,b,c spaces or their Y p,q cousins can be thought of as

1The La,b,c space is originally defined as the singular space corresponding to the U(1) GLSM of charges

(a,−c, b,−d) with a + b − c − d = 0 to preserve space-time supersymmetry.
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arising in the moduli space of higher dimensional Calabi-Yau singularities. This might help

in a generalised approach to the study of such singular spaces. We will have more to say

about this later in this paper.

The phase structure mentioned above can be studied conveniently by constructing

the GLSM Lagrangian in its most general form (i.e with all the possible Fayet-Iliopoulos

parameters turned on), and then tuning the various Fayet-Iliopoulos parameters of the

theory to understand the various phases. The systematic procedure to do this was initiated

in [9]. In that paper, the generic U(1)r GLSM Lagrangian was constructed in the relevant

non-linear sigma model (NLSM) limit, and it was shown how the various phases of the

GLSM corresponding to orbifold singularities can be studied in a very general fashion, by

providing vevs to certain fields of the GLSM in accordance with the D-term equations

of the model under consideration. Although the cases studied in [9] were for orbifold

singularities, these can be tuned to study more general GLSMs, like the supersymmetric

examples considered in [5, 7], or their non-supersymmetric counterparts [8]. Another aspect

of the results in [9] is that using the Lagrangian formulation of the GLSM in the NLSM

limit, it is possible to study the behaviour of D-branes in various phases of the GLSM.

In its simplest form, this problem reduces to constructing appropriate D-brane boundary

conditions in the GLSM [10, 11] and then continuing these appropriately to the different

regions of the GLSM moduli space.

The purpose of the present paper is to use and extend the ideas developed in [9] to

analyse, in most general terms, the phase structure of generic GLSMs corresponding to un-

stable spaces. We will show in the course of this paper that the phases of generic GLSMs

(corresponding to orbifold spaces or otherwise) can be analysed in a fully algebraic ap-

proach, which makes our methods computationally simpler than other existing techniques.

We work out several examples as an illustration of our approach. The organisation of the

paper is as follows. In section 2, we review some basic results on the GLSM Lagrangians

that were obtained in [9]. In section 3, which is the main part of the paper, we use this

Lagrangian formulation to extend the analysis of [9], to analyse the phases of GLSMs de-

scribing arbitrary toric singularities. This section is divided into two parts. In the first, we

study the behaviour of the world sheet gauge field in different phases of arbitrary GLSMs,

which is interesting from the point of view of the behaviour of D-branes in the same. In the

second part, we analyse in details the sigma model metrics arising in phases of the GLSM.

Finally, section 4 concludes with some discussions, and possible extensions of our work.

2. The GLSM lagrangian and singular spaces

In this section, we briefly review the results of [9] in analysing the phases of GLSMs

corresponding to generic orbifold singularities. This section is review material, and is

meant to set the notations and conventions to be used in the rest of the paper.

Since much of what follows in this paper deals with unstable spaces, let us begin by

briefly reviewing the notion of the simplest types of unstable spaces which can be given

a toric description, i.e the non-supersymmetric orbifolds of C
2 and their decay properties.
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Consider the orbifold of C
2, with action

(Z1, Z2) → (ωZ1, ω
pZ2) (2.1)

where Z1 and Z2 are coordinates on the C
2, and ω = e

2πi
n is the n th root of unity. When

p 6= n − 1, this orbifold action breaks space-time supersymmetry, and introduces tachyons

in the closed string spectrum for both Type II and Type 0 strings, that are localised at

the tip of the orbifold (and can be interpreted as twisted sector states in the closed string

world sheet conformal field theory). A similar action can be written down for C
3 (or C)

orbifolds.

An analysis of the condensation of closed string tachyons in this theory then shows

that the non-supersymmetric orbifolds decays toward more stable configurations. Whereas

for orbifolds of C, the end product of the decay is always flat space, orbifolds of C
2 and

C
3 show a much richer structure. The end product of decay of C

2 orbifolds are generally

supersymmetric orbifolds of lower rank, for C
3 orbifolds, one might end up reaching a

terminal singularity.

The “brane probe” approach of Adams, Polchinski and Silverstein (APS) [12] who first

studied these singularities is to use a probe D-brane that has its world volume transverse to

the orbifolded directions and is stuck and the orbifold fixed point. The brane probe picture

is essentially an open string picture in the substringy regime with localised tachyons, and

can be studied by using the gauge theory living on the world volume of the D-brane. In the

APS procedure, it is found that by exciting the marginal (or tachyonic deformations) in

the theory, one can drive the original orbifold to one of lower rank, and possible tachyonic

deformations of the resulting theory takes the system to a final stable supersymmetric con-

figuration. An useful alternative (closed string) approach is to study the N = (2, 2) SCFT

of the worldsheet, which is related to Witten’s GLSM. [13]. One can construct an appro-

priate GLSM corresponding to the non-supersymmetric orbifolds, and track the behaviour

of the model in the sense of the RG, and this provides us with an alternative description

for decays of non-supersymmetric orbifolds via closed string tachyon condensation.

In a related approach to the problem of tachyon condensation, the GLSM Lagrangian

and hence the sigma model metrics (with possible multiple U(1) gauge groups) was studied

for the non-supersymmetric C
2/Zn and C

3/Zn orbifolds [14, 15]. To illustrate the idea,

let us begin with a brief description of the GLSM. The action for a GLSM with, with an

Abelian gauge group U(1) is given by

S =

∫

d2zd4θ
∑

i

Φ̄iΦi −
1

4e2

∫

d2zd4θΣ̄Σ + Re

[

it

∫

d2zd2θ̃Σ

]

(2.2)

where the Φi are chiral superfields, Σ is a twisted chiral superfield, t = ir + θ
2π

is a

complexified parameter involving the FI parameter r and the two dimensional θ angle. As

appropriate in our case, we consider a theory without a superpotential. In general, we

will consider GLSMs with multiple U(1) gauge groups, in which case the twisted chiral

superfields Σ carries an extra index, along with the gauge coupling and the complex FI

parameter.
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In the e2 → ∞ limit of the GLSM (called the NLSM limit in the sequel), the gauge fields

appearing in (2.2) are Lagrange multipliers. It is then possible to obtain the Lagrangian

and solve the D-term constraint in the classical limit |r| → ∞ to read off the sigma model

metric corresponding to the GLSM [15, 9]. Focusing on the bosonic part of the GLSM

action, given by

S = −

∫

d2zDµφ̄iD
µφi (2.3)

the Lagrangian can be studied using the D-term constraints,
∑

i

Qa
i |φi|

2 + ra = 0 (2.4)

where φi are the bosonic components of the Φi and Qa
i denote the charges of the φi with

respect to the ath U(1). Orbifolds of the type C
r/Γ, with r = 1, 2, 3 can be described

by GLSM, with the number of the gauge groups being dictated by the nature of the

singularity. In the NLSM limit, the component gauge fields in the model can be calculated

and substituted back into the action to get the GLSM Lagrangian entirely in terms of the

toric data of the singularity.

It can be shown that the Lagrangian for a GLSM with the m fields φi, i = 1, 2, . . . ,m

with single U(1) gauge group with charges Qi, i = 1, 2, . . . m is given by:

L = (∂µρ1)
2 + (∂µρ2)

2 + · · · + (∂µρm)2 +

∑

i<j ρ2
i ρ

2
j (Qi∂µθj − Qj∂µθi)

2

∑

j Q2
jρ

2
j

(2.5)

Where we have written the complex fields φi = ρie
iθi . In the classical limits of the GLSM

(corresponding to the modulus of the FI parameter being very large), this formula gives

the sigma model metric for the singularity C
m−1/Zn. As we have mentioned before, this

corresponds to giving a large vev to any of the fields appearing in the Lagrangian.

Following a similar approach, the Lagrangian for the two parameter GLSM can be

constructed. For m fields φi, i = 1, 2, . . . ,m and two gauge groups a, b = 1, 2, the expression

for the Lagrangian is:

L = L1 + L2 (2.6)

where

L1 =
∑

i

(∂µρi)
2 (2.7)

L2 =

∑

[i,j,k][ρiρjρk∂µθi(Q
b
jQ

a
k − Qb

kQ
a
j )]

2

∑

i<j ρ2
i ρ

2
j (Q

b
iQ

a
j − Qa

i Q
b
j)

(2.8)

Where the symbol [i, j, k] in the summation in the numerator in L2 denotes cyclic combi-

nations of the variables and as before, we have written φi = ρie
iθi . This expression can be

used to study non-cyclic singularities of the form C
3/Zm × Zn as well, which can not be

described by a single parameter GLSM.

The above Lagrangians can be generalized to the case of the general r parameter

GLSMs. The general r parameter GLSM Lagrangian can be written as

L = L1 + L2 (2.9)
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where now

L1 =
∑

i

(∂µρi)
2 (2.10)

L2 = 6

∑

[j1,j2,...,jr+1]
[ρj1ρj2 . . . ρjr∂µ(θj1Kj2,...,jr)]

2

∑

j1<j2<...<jr
ρ2

j1
ρ2

j2
. . . ρ2

jr
[∆(j1, j2, . . . , jr)]2

(2.11)

where i and j1, j2, . . . , jr+1 go from 1, 2, . . . , n, where n is the total number of scalar fields.

Kj2,...,jr is the j1th component of the kernel of the matrix formed by the charges of the jr+1

vectors in the numerator of L2(and hence depends on j2, j3, . . . , jr+1), and ∆(j1, j2, . . . , jr)

is the determinant of the matrix formed by the charge vectors ρj1, ρj2 , . . . , ρjr under the r

U(1)s. Again the notation [j1, j2, . . . , jr+1] indicates a cyclic combination of the variables.

The derivation of eqs. (2.5)–(2.11) crucially uses the expressions for the world sheet

gauge fields, and we list the results for the same. It will be sufficient for us to write the

expression for the gauge fields for the most general case. For a U(1)r GLSM with fields

φi having charges Q
(a)
i under the ath U(1), a straightforward calculation shows that the

expression for the gauge field is given by

v(n)
µ =

∆n

∆
(2.12)

where µ = 0, 1, n = 1, · · · , r and ∆ = det A, with the matrix A being given by

A =





K11 K12 · · · K1r

· · · · · · · · · · · ·

Kr1 Kr2 · · · Krr



 (2.13)

where

Kab =
∑

i

Q
(a)
i Q

(b)
i |φi|

2 (2.14)

a and b going from 1 · · · r. ∆n is the determinant of the matrix A with the nth column

being replaced by the column matrix

J =

(

∑

i

Q
(1)
i (Imφ̄i∂µφi), · · ·

∑

i

Q
(r)
i (Imφ̄i∂µφi)

)T

(2.15)

where the sum is over all the fields in the theory. A detailed derivation of the above result

will not be useful for us. Note that for the special case of r = 1, this reduces to the familiar

result [15]

vµ =

∑

i QiIm(φ̄i∂µφi)
∑

i Q
2
i |φi|2

(2.16)

Having written down the GLSM Lagrangian and the world sheet gauge field in its

most general form entirely in terms of the toric data of the orbifold, we can now use this

formalism to study the classical phases of generic GLSMs. For a multi-parameter GLSM,

these phases are obtained from the Lagrangian by making (the modulus of) some of the

– 6 –
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fields in the GLSM very large.2 In [9], this approach was used to study the phases of

orbifold GLSMs, and it was shown how non-cyclic orbifolds of C
3, i.e orbifolds of the form

C
3/Zn × Zm can also be handled easily in this framework.

In what follows we will mostly present explicit formulae for GLSMs with one or two

gauge groups. It should be clear from our discussion in this section that these can be

carried over to more complicated examples involving multiple gauge groups.

3. GLSM analysis of generic singular spaces

In this section, we will study the phases of generic GLSMs, extending the analysis of [9],

using the Lagrangian formulation developed therein and discussed in the previous section.

Whereas our previous study focused on the sigma model metrics in phases of orbifold

singularities, we will be more general here. Generically, given an r parameter GLSM with

say m fields, we would like to study its classical limits by giving large vevs to an arbitrary

number of fields. Before we present the full Lagrangian analysis of the classical phases of

generic GLSMs, we will discuss an important subset of our results, the behaviour of the

world sheet gauge fields in generic phases of unstable spaces.

3.1 Behaviour of the gauge field in phases of unstable spaces

As is well known, the GLSM, which enjoys (2, 2) worldsheet supersymmetry, can be used

to construct the spectrum of D-branes on singular spaces. Specifically, one can construct

D-branes in the GLSM by considering the open string boundary conditions that preserve

(a part of the) supersymmetry, and the behaviour of D-branes in the classical phases of the

GLSM is captured by the behaviour of these boundary conditions in the various regions of

moduli space. An important ingredient in this study is the behaviour of the world sheet

gauge fields. Consider a single parameter GLSM. It can be shown following [10] that in

the Higgs branch of the theory, the world sheet gauge field is related to its space-time

counterpart as mv0 = Aµ∂0X
µ where m refers to the mth fractional D2- brane. It was

pointed out in [15] that by computing the flux of the space-time gauge field (which follows

from this identification), one can study the behaviour of D-branes in the classical limits of

the GLSM.

For the case of the simplest orbifold C/Zn, it can be shown by explicit computation

that whereas in the far UV region the flux of the space-time gauge field is localised at the

origin, it vanishes in the far IR region, thus rendering the (fractional) D2- branes of the

theory indistinguishable [15]. It is thus important to understand the behaviour of the gauge

fields in the phases of generic GLSMs, in order to understand D-brane dynamics in these,

and in this subsection, we present a preliminary analysis of the same. In what follows,

without loss of generality, we will focus on the behaviour of the world sheet gauge field v0.

A detailed description of the behaviour of D-branes would require a careful analysis of the

geometry probed by the gauge fields, by writing down the spacetime gauge field, and using

2This corresponds to a region of the moduli space where some combination of the Fayet-Iliopoulos

parameters being very large.

– 7 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
1

the gauge freedom of the unbroken U(1)s to study the gauge invariant angles that will

appear in the results. We will however, leave such an analysis for the future, and for the

purpose of this paper, present some qualitative features of the behaviour of the worldsheet

gauge field.

Before we begin, let us make a few comments. Firstly, note that there is a small

subtlety regarding the charges of the chiral fields in our Lagrangian formulation. Consider,

e.g. the two parameter GLSM of eqs. (2.8) and (2.11). Namely, in these equations, the

square of the charges appear in the denominator, and hence when some of the fields are

given very large vevs, it might seem that there is a sign ambiguity in the definition of the

charges of the remaining fields in the reduced Lagrangian. However, it is not difficult to

convince oneself that there is actually no such ambiguity. It is best to illustrate this with

an example. Consider, e.g. the GLSM corresponding to the unstable orbifold C
2/Z5(3).

The closed string description of this singularity tells us that there are two twisted sectors

that participate in the full resolution (corresponding to divisors with intersection numbers

−2 and −3, and hence the U(1)2 charge matrix for this singularity is given by

Q =

(

1 3 −5 0

2 1 0 −5

)

(3.1)

Writing the fields as φi = ρie
iθi , in the limit that one of the fields, say |φ1| ≫ 0, we

substitute this charge matrix in eq. (2.7), to obtain the (relevant part of the) reduced

Lagrangian L = N
D

where now

N = ρ2
2ρ

2
3 (−∂µθ3 − 2∂µθ2 + ∂µθ1)

2 + ρ2
2ρ

2
4 (−∂µθ4 + ∂µθ2 − 3∂µθ1)

2

+ρ2
3ρ

2
4 (2∂µθ4 + ∂µθ3 + 5∂µθ1)

2

D =
[

ρ2
2 (1)2 + ρ2

3 (−2)2 + ρ2
4 (+1)2

]

(3.2)

Note that the terms in N correspond to the gauge invariant angles, and we have explicitly

indicated the fact that in the denominator, the original signs appearing with the various

terms in eq. (2.7) have to be retained (modulo possibly an overall relative sign between

the terms). The value of D shows that we now have a reduced charge matrix for the fields

φ2, φ3, φ4 with

Q = (1,−2, 1) (3.3)

which is the GLSM for the supersymmetric orbifold C
2/Z2.

In general, in a two parameter GLSM, making one field large (i.e giving it a large vev)

will not break the full U(1)2 symmetry. Consider, e.g. the charge matrix in eq. (3.1). The

two D-term constraints coming from this charge matrix is given by

|φ1|
2 + 3|φ2|

2 − 5|φ3|
2 + r1 = 0

2|φ1|
2 + |φ2|

2 − 5|φ4|
2 + r2 = 0 (3.4)

Setting r1 ≪ 0, we can solve for |φ1| as

|φ1| =
√

5|φ3|2 − 3|φ2|2 − r1 (3.5)

– 8 –
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Now, substituting this value of |φ1| in the second of the D-term equations, we see that

there is a residual unbroken U(1) with a modified D-term constraint

−5|φ2|
2 + 10|φ3|

2 − 5|φ4|
2 + (r2 − 2r1) = 0 (3.6)

In order to completely break the original U(1)2, we now need to give a vev to a second

field. Hence, the GLSM that we obtain by making one field have a very large vev refers

to this residual U(1). Now, the relevant part of the one parameter Lagrangian3 with this

charge matrix is given by L = N1/D1, where D1 = D of eq. (3.2) and

N1 = ρ2
2ρ

2
3

(

∂µθ̃3 + 2∂µθ̃2

)2
+ ρ2

2ρ
2
4

(

∂µθ̃4 − ∂µθ̃2

)2
+ ρ2

3ρ
2
4

(

−2∂µθ̃4 − ∂µθ̃3

)2
(3.7)

where we have denoted the angular variables in the reduced Lagrangian with a tilde. Now,

with the identification

θ̃2 = θ2, θ̃3 = θ3 − θ1, θ̃4 = θ4 + 3θ1 (3.8)

we see that the two Lagrangians are identical. This analysis tells us that the supersym-

metric C
2/Z2 orbifold arises as a decay product of the unstable C

2/Z5(3) orbifold. Given

the generality of our analysis, it should be clear that this can be used to analyse the phases

of any GLSM with an arbitrary number of gauge groups and arbitrary charges.

Before we proceed, let us point out a simple rule to read off the charges of the resulting

GLSM when some of the fields have been integrated out. This will be useful for us in what

follows. We find that for a U(1)r GLSM, with r + 2 or r + 3 fields (according to whether it

describes a C
2 or a C

3 singularity), giving vevs to r− 1 fields, one can read off the charges

of the remaining 3 or the remaining 4 fields as follows. In the GLSM charge matrix, we

collect the charges of the fields being resolved, an a r × r − 1 matrix. Then the redefined

charges (upto probably an overall unimportant sign) of the remaining fields can be read

off as the determinant of the r × r matrix formed by augmenting the r × r − 1 matrix of

the resolved fields with each of the remaining fields in turn, while keeping the order of the

first r − 1 fields intact.

We now begin our discussion of the behaviour of (worldsheet) gauge fields in phases of

generic GLSMs. To illustrate the idea, let us consider the GLSM for the orbifold C
2/Zn(k),

with the charge matrix Q = (1, k,−n). (The example of the C orbifold was considered

in [15]). The explicit solution for the D-term equation for this model, in the IR, is

φ1 = ρ1e
iθ1 , φ2 =

√

|r| + nρ2
3 − ρ2

1

k
eiθ2 , φ3 = ρ3e

iθ3 (3.9)

this leads to the world-sheet gauge field

v0 =
ρ2
1∂0θ1 − nρ2

3∂0θ3 +
(

nρ2
3 − ρ2

1 + |r|
)

∂0θ2

ρ2
1 + n2ρ2

3 + k
(

nρ2
3 − ρ2

1 + |r|
) (3.10)

3In the L1 component in eq. (2.7) or eq. (2.10), the field that has been made large drops out.
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This is easily seen to be the the gauge field v0 in the UV, for the GLSM with the charge

matrix (1, 2k − n,−k), after we enforce the condition that in the latter case, all integers

are defined modulo k. A similar analysis holds for the space-time gauge field as well.

From the analysis that we have presented in the previous section, it should be clear

that the treatment of the last paragraph can proceed without the explicit solution of the

D-term equations. It is easy to see this. Consider, e.g the GLSM for two fields (φ1, φ2),

with charges

Q = (1,−n) (3.11)

which, in the UV limit is the orbifold C/Zn. We will consider the world sheet gauge field

v0, which is given by

v0 =
ρ2
1∂0θ1 − nρ2

2∂0θ2

ρ2
1 + n2ρ2

2

(3.12)

where, as before, we have denoted the complex fields φi = ρie
iθi . In the limit ρ2 ≫ 0, we

recover v0 = −∂0

(

θ2

n

)

and in the IR, when ρ1 ≫ 0, we have v0 = ∂0θ1. This implies that

the flux of the space-time gauge field vanishes in the IR, and is localised at the conical

defect in the UV. The same conclusion can be reached by explicitly solving for v0 in terms

of the FI parameter of the theory [15].

An entirely similar analysis can be done for orbifolds of the form C
2/Zn(k). Let us first

concentrate on the single parameter GLSM description of this orbifold, which consists of

three fields φi, i = 1, · · · , 3 that we denote as φi = ρie
iθi . The have U(1) charges denoted

by Q = (1, k,−n). For this model, the world sheet gauge field v0 is solved as

v0 =
ρ2
1∂0θ1 + kρ2

2∂0θ2 − nρ2
3∂0θ3

ρ2
1 + k2ρ2

2 + n2ρ2
3

(3.13)

In the UV limit (which corresponds to setting ρ3 ≫ 0), we see that the flux of the spacetime

gauge field is localised at the origin of a cone with conical deficit 2π
n

. In the IR, we can

either take ρ1 or ρ2 to be very large (as is obvious from the D-term equation for this model).

In the former case, the flux is seen to be zero in the IR, but it is localised at the origin of

a cone with the conical deficit being 2π
k

when we consider the latter case. This shows that

under the RG evolution of the FI parameter, the gauge field flux gets trapped at the tip of

a cone with a greater conical deficit. The process stops when one reaches a supersymmetric

configuration, and there is no further RG flow of the FI parameter.

Let us point out that for generic r parameter GLSMs in the classical limit, making

some fields acquire a large vev is equivalent to reducing the number of U(1) gauge groups,

from our discussion of section 2. It can be shown that in this case, some of the gauge

fields become appropriately identified, upon identification of the gauge invariant angles.

E.g for two parameter theories, by giving a large vev to one of the fields (which effectively

reduces the theory to a U(1) GLSM, the gauge fields v
(1)
0 and v

(2)
0 can be identified as the

single gauge field for the reduced theory. We will illustrate this with the example of the

unstable orbifold C
2/Z5(3), which has two twisted sectors, and hence is described by the

U(1)2 GLSM of four fields φi, i = 1 · · · 4, with the charge matrix given eq. (3.1).

The world sheet gauge fields can be calculated in this model by using the formulae in

eqs. (2.12)–(2.15). We will concentrate on the gauge field v0. In the phase of this theory
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where |φ1| is very large, we obtain the GLSM for the supersymmetric orbifold C
2/Z2 with

the charge matrix (1,−2, 1) (and zero FI parameter), and the expressions for the gauge

field v
(1)
0 is

v
(1)
0 =

ρ2
2∂0θ̃2 − 2ρ2

3∂0θ̃3 + ρ2
4∂0θ̃4

ρ2
2 + 4ρ2

3 + ρ2
4

(3.14)

where the angles turn out to be gauge invariant with respect to the second U(1) of eq. (3.1),

θ̃2 = (2θ2 − θ1) , θ̃3 = (2θ3) , θ̃4 = (2θ4 + θ1) (3.15)

and we have used the fact that the integers appearing in the expressions above are defined

modulo 2. A similar calculation for the field v
(2)
0 now shows that it is indeed identical to

v
(1)
0 above, with a different choice of the gauge invariant angles, now with respect to the

second U(1). This is therefore (the zeroth component of) the gauge field of the U(1) left

unbroken by our choice of vevs.Now, once can consider any other phase where another field

is very large, and it is seen that now turning on very large vevs for φ2 and φ4 result in the

dilution of the flux of the space-time gauge fields, whereas giving a large vev to φ2 results

in the flux being trapped at the tip of a cone with a conical deficit of π
2 .

Next, let us consider orbifolds of the form C
3/Zn×Zm. This case is interesting, as it has,

among its phases, unstable La,b,c or Y p,q toric singularities [5]. Let us see how this works

out in this framework. As a concrete example, we take the space-time supersymmetric

orbifold C
3/Z3 × Z3. The toric data (and hence the charge matrix for the GLSM) for this

model can be worked out by using the standard closed string prescription of constructing

the twisted sectors of the theory, and then restoring integrality in the Z
⊕3 formed by the

twisted sector R charges and the generators of the lattice (see, e.g [17, 18, 9]). Choosing

the two Z3 actions as

g1 :
(

Z1, Z2, Z3
)

→
(

ωZ1, ω2Z2, Z3
)

g2 :
(

Z1, Z2, Z3
)

→
(

ωZ1, Z2, ω2Z3
)

(3.16)

(ω = e
2πi
3 and including the fractional points corresponding to the action of g1.g2, we obtain

the toric data for the C
3/Z3 × Z3 orbifold [9]

T =





1 0 0 2 −1 2 3 1 −2 4

0 1 0 2 0 1 2 1 0 3

0 0 1 −3 2 −2 −4 −1 3 −6



 (3.17)

The charge matrix for the U(1)7 GLSM of 10 fields φi, i = 1, · · · 10 is the kernel of T , and

is given (in a particular basis) by

Q =























1 0 0 0 0 0 0 −4 −3 6

0 1 0 0 0 0 0 2 0 −3

0 0 1 0 0 0 0 −1 −1 1

0 0 0 1 0 0 0 −3 −2 4

0 0 0 0 1 0 0 −2 −1 2

0 0 0 0 0 1 0 1 0 −2

0 0 0 0 0 0 1 −2 −2 3























(3.18)
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Now, we consider the phase of this GLSM in which some of the fields are given very large

vevs. If we give make |φi|, i = 1 · · · 6 very large, the resulting gauge fields can been seen to

correspond to that of a U(1) GLSM with charge matrix:

Q = (1, 3,−2,−2) (3.19)

With zero FI parameter, this is the space Y 2,1 whose toric diagram can be embedded in

that of C3/Z3 × Z3 [5]. We can also read off the charges of the remaining fields under

different choices of the unbroken U(1). E.g if we give the fields φ1, · · · , φ5 and φ7, we

obtain GLSM of the C
2/Z2×C singularity, while giving vevs to φ1, · · · , φ5 and φ8 gives the

unbroken U(1) corresponding to the space L1,2,1, or the suspended pinch point singularity.

It is simple to generalise the above to the case of product orbifolds that act asym-

metrically on the coordinates of C
3, e.g the supersymmetric orbifold C

3/Z2 ×Z5, with the

orbifolding action for the two groups being

g1 :
(

Z1, Z2, Z3
)

→
(

−Z1,−Z2, Z3
)

g2 :
(

Z1, Z2, Z3
)

→
(

Z1, ωZ2, ω−1Z3
)

(3.20)

From the twisted sectors of the theory, we find that this orbifold is described by a U(1)7

GLSM of 10 fields. The behaviour of the world sheet gauge field can be easily analysed

in various phases of this theory, and it can be checked that the suspended pinch point

singularity arises in this theory as well, i.e its toric diagram can be embedded in the

singularity C
3/Z2 × Z5.

Our formulation can be carried over with ease to the unstable non-cyclic singularities

of C
3 as well. We will be brief here, and consider the simple example of the space-time non-

supersymmetric orbifold C
3/Z5(2) × Z5(2) where the action of the Z5 introduces tachyons

in the closed string spectrum. The GLSM for this orbifold can be calculated using its toric

data [9] is given, in a particular basis, as the U(1)5 theory of eight fields φi, i = 1 · · · 8,

Q =















1 0 0 0 0 3 −1 −5

0 1 0 0 0 1 −2 0

0 0 1 0 0 −3 1 0

0 0 0 1 0 1 −1 −1

0 0 0 0 1 2 −1 −3















(3.21)

We find that giving large vevs to the first four fields φi results in the GLSM of remaining

four fields with charges (1, 2,−1,−3), while the phase in which the fields φ1, φ2, φ3 and

φ5 have a large vev is the supersymmetric conifold. The gauge fields can be computed as

before, and various lengthy combinations of gauge invariant angles occur and we will not

present the explicit expressions here. In the former case, as before, making a fifth field very

large may result in the flux of the space-time gauge field strength being completely diluted

(i.e the resulting space is flat) or it might correspond to a conical deficit corresponding to

an orbifold of C
3.

Finally, we comment briefly on the behaviour of the gauge field in orbifolds of C
4.

This has a substantially richer structure than our previous examples. However, one needs
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to be careful here, since many members of this class orbifolds of C
4 do not admit a

crepant resolution. We leave a detailed study of these (space-time supersymmetric and

non-supersymmetric) orbifolds for the future, and for the purpose of this paper, we will

consider a few supersymmetric examples, which will qualitatively illustrate the broad ap-

plicability of our results.

Our first example is that of the orbifold C
4/Z10 with the orbifolding action

(

Z1, Z2, Z3, Z4
)

→
(

ωZ1, ωZ2, ωZ3, ω7Z4
)

(3.22)

with ω being the 10th root of unity. This orbifold does admit a crepant resolution [19].

The toric data for this orbifold can be calculated by standard means (e.g by restoring

integrality in the fractional Z
⊕4 lattice obtained from the twisted sector R charges) and it

can be shown that this orbifold is described by a U(1)3 GLSM of 7 fields, and by making

some of the fields large as before, one can read off the behaviour of the world sheet gauge

field in different phases of this theory. E.g by making three of the seven fields of this

theory very large (so as to retain a single unbroken U(1), we recover the supersymmetric

Z4 orbifold of C
4 and the C

2/Z2 × C
2 theory.

Product orbifolds of C
4 are also easy to study. As a simple example, consider the

orbifold C
4/Z5 × Z5 where the orbifolding action

g1 :
(

Z1, Z2, Z3, Z4
)

→
(

ωZ1, ωZ2, ω3Z3, Z4
)

g2 :
(

Z1, Z2, Z3, Z4
)

→
(

ωZ1, ωZ2, Z3, ω3Z4
)

(3.23)

with ω = e
2πi
5 makes the orbifold space-time supersymmetric. In this case, the GLSM

charge matrix in a particular basis is given by (the twisted sectors under the action of g1.g2

are all irrelevant)

Q =









1 1 0 0 0 0 1 −3

0 0 1 0 0 −5 −2 6

0 0 0 1 0 0 −2 1

0 0 0 0 1 −3 −1 3









(3.24)

Labeling the fields as before as φi, i = 1, · · · , 8, and e.g giving large vevs to the fields

φ2, φ3, φ4, we unbroken U(1) corresponds to the singular space L1,3,1 with the GLSM charge

matrix (1,−1, 3,−3).

We have also studied the slightly more complicated example of the supersymmetric

orbifold C
4/Z3 × Z3 × Z3, extending the action for the C

3/Z3 × Z3 orbifold presented

before. By including the various twisted sectors of the theory, we find a U(1)16 GLSM of

20 fields. We find that by giving large vevs to 15 of the fields, so as to again retain a single

U(1), we obtain the supersymmetric conifold in many regions of moduli space. It would

be interesting to explore this further, and to understand the phases of C
4 orbifolds with

terminal singularities, using our methods.

3.2 Decay of generic unstable spaces

We will now present our analysis of singular spaces corresponding to GLSMs with charges

Q = (Q1, Q2,−Q3,−Q4) (3.25)
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with the Qi being positive integers, using the Lagrangian analysis discussed in section 2,

and calculate the explicit sigma model metrics for the same. As discussed in [6], this is

the most general charge configuration for a U(1) GLSM with four fields which does not

describe an orbifold singularity. This is because all the charges have been taken to be

non-zero, hence either two of them or three of them have the same sign, but the latter are

simply orbifolds of C
3 so for our purposes, it is enough to begin with the charge matrix of

eq. (3.25). For the Calabi-Yau condition to be satisfied, one requires that
∑

i Qi = 0, but we

will not put such a restriction here, and would consider the general case where
∑

i Qi 6= 0.

The Lagrangian corresponding to the infinite gauge coupling limit of the GLSM, with the

D-term constraint being

Q1|φ1|
2 + Q2|φ2|

2 − Q3|φ3|
2 − Q4|φ4|

2 + r = 0 (3.26)

is given by setting m = 4 in eq. (2.5),

L = (∂µρ1)
2 + · · · + (∂µρ4)

2 +

∑

i,j=1,···4,i<j ρ2
i ρ

2
j (Qi∂µθj − Qj∂µθi)

2

∑

j Q2
jρ

2
j

(3.27)

where the fields with charge Qi have been written as φi = ρie
iθi .

We now look at the classical limits of this GLSM. This can be done by setting the

(magnitude of the) Fayet-Iliopoulos parameter to be very large. Specifically, setting r to

be very large positive, we see that (the modulus of) either φ3 or φ4 has to be made very

large. If we choose φ4 to be very large, we can solve for the fields in the classical limit as

φ1 = ρ1e
iθ1 , φ2 = ρ2e

iθ2 , φ3 = ρ3e
iθ3 , φ4 =

√

Q1ρ2
1 + Q2ρ2

2 − Q3ρ2
3 + r

Q4
eiθ4 (3.28)

Substituting these values in the Lagrangian yields

L =

3
∑

i=1

(∂µρi)
2 + ρ2

1dθ̃2
1 + ρ2

2dθ̃2
2 + ρ2

3dθ̃2
3 (3.29)

where

θ̃1 = θ1 +
Q1

Q4
θ4, θ̃2 = θ2 +

Q2

Q4
θ4, θ̃3 = θ3 −

Q3

Q4
θ4 (3.30)

This can be recognised as the Lagrangian corresponding to the orbifold GLSM with charges

Q = (Q1, Q2, pQ4 − Q3,−Q4) (3.31)

where p is the smallest positive integer that makes pQ4 −Q3 a positive number. Similarly,

if we set φ3 to be very large, we obtain the Lagrangian corresponding to the classical limit

of the GLSM with charges

Q =
(

Q1, Q2, p
′Q3 − Q4,−Q3

)

(3.32)

where, as before we have introduced an integer p′ to make the third entry in the above

equation positive.
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The analysis for r ≪ 0 can be carried out in exactly the same way, and the correspond-

ing orbifold singularities have ranks Q1 and Q2. This shows that the GLSM with charges

given in eq. (3.25) contain orbifold singularities in their classical limits (This conclusion

has been reached by other methods in [8]). The full phase structure of the GLSM can thus

be studied by including the additional blow up modes that follow from these orbifolds. Let

us see if we can substantiate this. Consider, e.g. the simpler class of the supersymmetric

Y p,q singularities, described by the GLSM with charge matrix

Q = (p − q, p + q,−p,−p) (3.33)

The D-term constraint in this case reads

(p − q) |φ1|
2 + (p + q) |φ2|

2 − p
(

|φ3|
2 + |φ4|

2
)

+ r = 0 (3.34)

in the classical limits, we can solve the D-term constraint as before. Consider e.g. the limit

r ≫ 0. In this case, we can choose to set the magnitude of φ4 to be very large. Substituting

the result in eq. (3.27) we see that the resulting Lagrangian has the same form as that in

eqs. (3.29) and (3.30), excepting that now the coordinate corresponding to ρ3 (and θ3)

are unorbifolded, leading to the fact that in this limit we actually have a supersymmetric

C
2/Zp singularity. A similar result is obtained on setting φ3 ≫ 0 wherein we recover

the same singularity. In the other limit, i.e when r ≪ 0, we recover two supersymmetric

C
3 orbifolds, of ranks p − q and p + q. Let us take the concrete example of the GLSM

corresponding to Y 3,2, given by the charge matrix

Q = (1, 5,−3,−3) (3.35)

The discussion in the preceding paragraph tells us that in the various classical limits of

the Fayet-Iliopoulos parameter of this model, we recover, apart from flat space, the C
3/Z5

orbifold and two copies of the orbifold C
2/Z3 ×C.4 The original GLSM charge matrix can

now be enhanced by adding the twisted sectors corresponding to marginal deformations,

and the full GLSM charge matrix is calculated to be

Q =















1 5 −3 −3 0 0 0 0

1 0 2 2 −5 0 0 0

3 0 1 1 0 −5 0 0

1 2 0 0 0 0 −3 0

2 1 0 0 0 0 0 −3















(3.36)

The complete phase structure of the Y 3,2 space can now be obtained by analysing the

Lagrangian corresponding to the charges of eq. (3.36) by making any combination of fields

very large. Since the theory is supersymmetric, all the added twisted sector charges survive

the GSO projection. This will in general not be the case for unstable spaces. For the charge

4The action of the C
3 orbifold is (Z1, Z2, Z3) →

`

ωZ1, ω
2Z2, ω

2Z3

´

with ω = e
2πi

5 and that of the C
2

orbifolds is (Z1, Z2) →
`

ω′Z1, ω
′2Z2

´

with ω′ = e
2πi

3
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matrix of eq. (3.36), we present the results for some of the phases of the theory. E.g if we

make the fields ρ1, ρ2, ρ3, ρ5 and ρ6 very large, the resultant flat sigma model metric is

ds2 = dρ2
4 + dρ2

7 + dρ2
8 + ρ2

4d(θ4 − θ3)
2 + ρ2

7d(θ7 − θ1 + 2θ2 + 3θ3 + θ5)
2

+ρ2
8d(θ8 + 2θ1 − θ2 − θ3 + θ6)

2 (3.37)

Making the fields ρ2, ρ4, ρ6, ρ7 and ρ8 acquire very large vevs, we obtain the sigma model

metric

ds2 = dρ2
1 + dρ2

3 + dρ2
5 +

ρ2
1

(2)2
d(2θ1 − θ2 − θ4 + θ6 + θ8)

2 + ρ2
3d(θ3 − θ4)

2

+
ρ2
5

(2)2
d(2θ5 + 3θ2 + 5θ4 + θ6 + 2θ7 + θ8)

2 (3.38)

which can be recognised to be the metric for C
2/Z2 × C, and arises in a limit of the

supersymmetric C
2/Z3 × C that we have seen earlier. Finally, say we look at the region

of moduli space where the fields ρ1, ρ2, ρ5, ρ6 and ρ7 acquire large vevs. In that case, the

metric reads

ds2 = dρ2
3 + dρ2

4 + dρ2
8 +

ρ2
3

(3)2
d(3θ3 − θ1 + 2θ2 + θ5 + θ7)

2

+
ρ2
4

(3)2
d(3θ4 − θ1 + 2θ2 + θ5 + θ7)

2

+
ρ2
8

(3)2
d(3θ8 + 5θ1 − θ2 + θ5 + 3θ6 + θ7)

2 (3.39)

which is the metric for the orbifold C
3/Z3.

The above analysis can be carried over to generic GLSMs representing unstable spaces.

Let us concentrate on the class of GLSMs with charges

Q = (1, n2,−n3,−n4) (3.40)

where, without loss of generality we may take the first charge to be unity and we also

assume that n4 > n3 > n2, where the ni are positive integers. This is an unstable conifold

like singularity. Now take the case where n2 acquires a large vev. The sigma model metric

becomes,

ds2 =
4

∑

i=2

(dρi)
2 +

ρ2
1

n2
2

d (n2θ1 − θ2)
2 +

ρ2
3

n2
2

d (n2θ3 + n3θ2)
2 +

ρ2
4

n2
2

d (n2θ4 + n4θ2)
2 (3.41)

This is recognised as the metric for the space C
3/Zn2

in the sense that when the Fayet-

Iliopoulos parameter of the latter becomes very large, we recover the metric of eq. (3.41).
5 Now, we might add the twisted sectors corresponding to this orbifold, with the condition

5One might convert this charge matrix to standard form by making one of the integers to be unity using

the fact that the integers in eq. (3.41) are defined modulo n2, but that will not affect the physics.
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that these are either relevant or marginal. 6 We find that including some of the twisted

sectors in the analysis, our Lagrangian formulation predicts, in general, the existence of

lower order conifold like singularities. The general example is less useful at this point of

our discussion, and let us consider, as a concrete example, the GLSM of four fields with

charges

Q = (1, 3,−5,−11) (3.42)

The Lagrangian for this model is as usual given by setting m = 4 in eq. (2.5). We consider

the various limits of the model by setting one field large at a time. Setting the vev of φ1 to

be very large, we recover flat space. A similar analysis for the Lagrangian with φi, i = 2, 3, 4

having very large vevs gives rise to the sigma model metrics

ds2
2 = dρ2

1 + dρ2
3 + dρ2

4 +
ρ2
1

9
(3dθ1 + 2dθ2)

2 +
ρ2
3

9
(3dθ3 + 2dθ2)

2

+
ρ2
4

9
(3dθ4 + 2dθ2)

2

ds2
3 = dρ2

1 + dρ2
2 + dρ2

4 +
ρ2
1

25
(dθ3 + 5dθ1)

2 +
ρ2
2

25
(3dθ3 + 5dθ2)

2

+
ρ2
4

25
(4dθ3 + 5dθ4)

2

ds2
4 = dρ2

1 + dρ2
2 + dρ2

3 +
ρ2
1

(11)2
(dθ4 + 11dθ1)

2

+
ρ2
2

(11)2
(3dθ4 + 11dθ2)

2 +
ρ2
2

(11)2 (6dθ4 + 11dθ3)
2 (3.43)

where the subscripts on the r.h.s indicates which field has been made large. These metrics

are recognised to be the sigma model metrics for the orbifolds C
3/Z3(2,2,2) (or, equivalently,

the supersymmetric C
3/Z3(1,1,1)), C

3/Z5(1,3,4) and C
3/Z11(1,3,6) respectively. It is now clear

how to enlarge the charge matrix. Including the relevant (and marginal) twisted sector

states gives the enlarged charge matrix

Q =















1 3 −5 −11 0 0 0 0

1 0 1 1 −3 0 0 0

1 3 6 0 0 −11 0 0

2 6 1 0 0 0 −11 0

4 1 2 0 0 0 0 −11















(3.44)

and it is seen that apart from the third row, all other entries survive the type II GSO

projection. Using our Lagrangian formulation, we can analyse the phases of this theory

in full generality. E.g taking the truncated charge matrix (corresponding to the first two

entries)

Q =

(

1 3 −5 −11 0

1 0 1 1 −3

)

(3.45)

6It should be pointed out that in this analysis, we need to take care of the GSO projection of the twisted

sectors. In general, a twisted sector will survive the type II GSO projection for
P

i
Qi = even. For the

purpose of our analysis, we will broadly consider type 0 strings, it being understood that for type II theories,

some of the twisted sectors are projected out.
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we see that making the first field very large, we get the GLSM (corresponding to an

unbroken U(1)) with charge matrix Q = (1,−2,−4, 1). Similarly, assigning a very large

vev to the third field gives an unstable space represented by a U(1) GLSM with charges

(2,−2,−1, 5). The sigma model metrics corresponding to these can be easily written down.

The analysis with the full charge matrix is also simple. In this example, we get 42

distinct phases of the full GLSM, 22 of which corresponds to flat space, one each of Z11

and Z5 orbifolds, 2 each of Z4 and Z6 orbifolds, 5 are Z3 and 9 are Z2 orbifolds. The exact

action of these orbifolds can also be determined using the relevant Lagrangian in these

phases. This illustrates the computational simplicity of our method of determining phases

of generic GLSMs.

4. Conclusions

In this paper, we have extended the analysis of [9] to study the classical phases of generic

GLSMs using the Lagrangian formulation. Our analysis gives a simple and powerful way

of obtaining these phases, by tuning the fields which appear in the GLSM. We have shown

how to construct the full phase structure of generic GLSMs, which might be unstable. To

us, this completes the analysis initiated in [9], and our methods are complementary to

those obtained in [8, 16]. However, there are certain issues that need to be examined.

Our formalism can be used to study the evolution of the D-brane boundary conditions

for unstable spaces in the classical limits of the corresponding GLSMs, extending the

preliminary analysis that we have presented here. As a simple example, the open string

GLSM boundary condition D1φi = 0 (with the world sheet gauge field strength v01 = 0) [11]

for the simplest fractional D2- brane (other fractional D2- branes are related to this by

a quantum symmetry) in the unresolved orbifold phase can be seen from these formulae

to translate into the simpler condition ∂1φi = 0 where the angular part of the φi now

correspond to a gauge invariant angle. A similar result is obtained for other phases as

well. It would be very interesting to do the corresponding analysis for generic unstable

spaces using our Lagrangian formalism, especially for cases where there might be terminal

singularities.

Further, having completely studied the full phase structure of a given GLSM, one

might ask if the reverse engineering of singular spaces is possible. That is, given a certain

number of orbifold singularities, is it possible to construct a GLSM that will have these

orbifolds in their phases. An answer to this question will probably help us to have a better

understanding of the D-brane quiver gauge theories corresponding to generic GLSMs, that

have been analysed for the supersymmetric case in [7].
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